A Selenium-77 and Cadmium-l 13 NMR Spectroscopic Study of Phenylselenolate Complexes of Cadmium

GEETHA K. CARSON and PHILIP A. W. DEAN*

Department of Chemistry, University of Western Ontario, London, Ont., N6A 5B7 Canada

Received September 18, 1981

The reduced-temperature slow-exchange 77Se and l13Cd NMR spectra of the complexes [Cd(SPh),- $(SePh)_{4-n}/^{2-}$ have been measured. At 213 K, the *l13Cd chemical shifts change linearly from* ca. *541 ppm (n = 0) to* ca. *590 ppm (n = 4) relative to external 0.1 M Cd(C104)2(aq) at ambient probe temperature.* Also $\frac{1}{J}$ $\left(\frac{113}{10}-\frac{77}{15}\right)$ *changes linearly from 126* \pm 3 Hz to 46 \pm 4 Hz and the ⁷⁷Se com*plexation shifts (=* δ_{Se} *(complex) -* δ_{Se} *(free)) decrease monotonically from* ca. *-22 ppm to* **ca.** *-3Oppm as n is increased from 0 to 3.*

In the ternary mixtures $Cd^{2+}-PhS^- - PhSe^-$ *. the selenolate binds preferentially, the ratio of the overall formation constants* $K(\text{Cd}(SePh)_4)^{2-}$ *]* $K(\sqrt{Cd(SPh)}_4)^{2-}$) being of the order 10^3-10^4 ; the *significance of this finding to the well-known antagonism of selenium compounds towards cadmium intoxication is discussed.*

Introduction

In recent work from this laboratory $[1]$ the ¹¹³Cd NMR spectra of a wide range of simple thiolatocadmates were reported. These 'fingerprint' data were intended to ease the interpretation of the metal NMR spectra of more-complicated biologically-important cadmium complexes.

To complement our earlier study, we have now measured ¹¹³Cd and ⁷⁷Se NMR spectra of several cadmium complexes with a representative selenolate, PhSe⁻. The cadmium-selenolate linkage, which has been scarcely studied previously, might be involved in the cadmium-selenium complex(es) which are formed by simultaneous administration of selenium and cadmium to rats *in viva*** [2] and which may provide the basis for the remarkable, well-established

 $(e.g.$ Refs. $3-5)$, protective effect of certain selenium compounds against cadmium intoxication. At the same time, the Cd-Se bond is an ideal candidate for scrutiny by NMR: both 77 Se (7.6% natural abundance, μ = 0.5325 nuclear magnetons) and ¹¹³Cd (12.3% natural abundance, μ = 0.6195 nuclear magnetons) have spin $I = \frac{1}{2}$, and their resonances are readily accessible with modern instrumentation.

Experimental

Phenylthiol (Aldrich Chemical Company) and phenylselenol (Alfa Products) showed no significant impurity by ¹³C NMR and were used as received. Cadmium-113 oxide (96.3 atom $%$ ¹¹³Cd), from Oak Ridge National Laboratory, was converted to the nitrate for use in the NMR study.

All solvents were deaerated with high-purity nitrogen or argon, and all manipulations were performed in a glove bag under high-purity nitrogen or argon, or using a Teflon-glass vacuum line. The NMR samples, which contained $\lceil Cd^{2+} \rceil$: ($\lceil PhSeH \rceil + \lceil PhSH \rceil$): $\lceil OH^{-} \rceil$ or $[OMe^-]$ in the approximate range $0.05:0.6:1.2 M$, were prepared in sealed 10 mm od NMR tubes as described previously for $Cd^{2+}-RS^{-}-R'S^{-}$ mixtures $[1]$.

Initial 77 Se and 113 Cd NMR samples were measured, in the manner reported earlier for 113 Cd NMR [1], using an XL-100-12 Spectrometer System operating at 19.12 and 22.34 MHz for ⁷⁷Se and 113 Cd, respectively. Typically, acceptable 77 Se spectra of samples without ¹¹³Cd enrichment required several thousand transients using a pulse angle of 45° , 12.5 kHz spectral window, 1 s acquisition time and 4.3 s cycle time. '13Cd NMR spectra without clearly resolved $\frac{7}{5}$ satellites (except in solutions containing $[$ ¹¹³Cd(SePh)₄]²⁻ only) were obtained in several thousand transients using a pulse angle of 21° , 10 kHz spectral window, 1 s acquisition time and 3.6 s cycle time. To obtain readily identifiable π Se satellites in the 113 Cd NMR spectra, and 113 Cdcoupled ⁷⁷Se NMR, selected samples were later run

^{*}Author to whom correspondence should be addressed. **A complex containing Cd. Se = 1:1 is formed in rat plasma following admmistration of cadrmum and selenite *in vivo* or when cadmum, selenite, plasma and erythrocytes are incubated *in vitro* [*21.*

n in $\left[\text{Cd(SPh)}_{n}\text{(SePh)}_{4-n}\right]^{2-}$	$\Delta \delta_{\text{Se}}^{\text{b}}$ (ppm)	$\Delta \delta_{\text{Cd}}^{\text{c}}$ (ppm)	$1J(^{113}Cd - ^{77}Se)^d$ (Hz)
$\bf{0}$		0	126
	-2.4	12.9	99
2	-5.2	25.4	72
3	-8.3	374	46 ^e
4	$\overline{}$	49.0	$\overline{}$

TABLE I. The ⁷⁷Se and ¹¹³Cd NMR Spectral Parameters of the Complexes $[Cd(SPh)_n(SePh)_4_{-n}]$ ²⁻ at 213 K in CH₃OH-CD₃OD^a

 ${}^{a}CH_{3}OH:CD_{3}OD = 4.1.$ ${}^{b} \Delta \delta_{Se} = \delta_{Se}(\text{complex}) - \delta_{Se}([Cd(SePh)_{4}]^{2})$. In a solution where $[{}^{113}Cd]$ [PhSe⁻] [PhS⁻] \approx 0.035:0.11:0.32 M, $\delta_{Se}([Cd(SePh)_4]^2)$ and $\delta_{Se}({PhSe-(free)})$ are -9.9 and 12.1 ppm, respectively, at 213 K in CH₃OH-CD₃OD. A 0.6 *M* solution of PhSe⁻ in CH₃OH has δ_{Se} = 12.5 and 35.9 ppm at 213 K and 306 K, respectively. ^CA δ_{Cd} = $G_{\rm{Gd}}(\text{complex}) - \delta_{\rm{Cd}}([Cd(SePh)_4]^2$). A 0.035 M solution of $\left[1^{13}\text{Cd}(SePh)_4\right]^{2}$ in CH₃OH:CD₃OD at 213 K has $\delta_{\rm{Cd}} \approx 541$ ppm. dObserved in both 76 31 MHz 77Se and 88 74 MHz ¹¹³Cd NMR spectra except where noted Estimated error + 3 Hz except where noted. e^e Estimated error \pm 4 Hz; observed in ⁷⁷Se NMR spectrum only.

on a Bruker WH-400 NMR spectrometer operating at 76.31 MHz and 88.74 MHz for 77 Se and 113 Cd, respectively. At these higher frequencies $1-2 \times 10^3$ transients were required with operating parameters similar to those used on the XL-100. Cadmium-113 chemical shifts were measured relative to external aqueous $4 M \text{Cd}(NO₃)₂$ at ambient probe temperature as primary reference and converted to aqueous 0.1 *M* $Cd(C1O_4)_2$ as reference using $\delta_{0,1}M$ cd($CF_{4,2}$ = $\delta_{4,M \text{ Cd(NO)}_2}$ $-$ 65 ppm [6]. Selenium-77 chemical shifts were referred to external neat $Me₂Se$ at ambient probe temperature. All shrfts are reported with increasing shift corresponding to increasing frequency. Because the absolute $\bar{7}$ Se and 113 Cd chemical shifts of the various complexes studred varied somewhat with solution composition, whereas the relative shifts did not, relative shifts have been given in Table I.

Results and Discussion

When an aqueous solution of $PhSe^-$ is added to aqueous cadmium nitrate, precipitation occurs up to *ca.* L/M = 2, by comparison with the system Cd^{2+} -PhS^{$-$} [7], the solid is most probably $Cd(SePh)₂$. Addition of further PhSe⁻ causes dissolution of the precipitate

An aqueous solution containing $[113 \text{Cd}^{2+}]$ [PhSe-] :[(excess) OH] = 0.05:0.6:0.6 *M gwes,* at 306 K, a ¹¹³Cd resonance having δ_{Cd} = 538 ppm but no observable 77Se satellites, and a single, broad $(w_{1/2} \approx 120 \text{ Hz})$ 19.1 MHz ⁷⁷Se resonance with $\delta_{\text{Se}} \approx$ 24.8 ppm shielded by 9.4 ppm from the comparatrvely sharp ($w_{1/2}$ = 5 Hz) resonance of a 0.6 *M* solution of PhSe⁻. The last result shows that free-bound ligand exchange is fast on the NMR timescale at 306 K in this system. In a correspondmg solution in methanol at reduced temperature, hgand exchange 1s slow on the NMR timescale: at 213 K, the cadmium

resonance at δ_{Cd} = 541 ppm is flanked by a pair of 77Se satellites with intensity *ca.* 25% of the total intensity and a one-bond 1'3Cd-77Se couphng of 126 Hz, while the 77 Se resonance of the complex is a doublet of 126 Hz separation, deshielded by 23.5 ppm from the signal due to the excess ligand which has $\delta_{\text{Se}} = 12.3$ ppm. The satellite intensity in the ¹¹³Cd spectrum is close to the 23.9% population of $CdSe₃$ ⁷⁷Se expected for a statistical distribution of zero-spm selenium and selenium-77 in natural abundance [8], suggesting that the species formed from Cd^{2+} and excess PhSe is $[Cd(SePh)_4]'^2$

The formation of $[Cd(SePh)_4]^2$ is confirmed by an examination of the low-temperature slowexchange ¹¹³Cd and ⁷⁷Se NMR spectra of ternary mixtures of 113Cd^{2+} , PhSe⁻ and PhS⁻; NMR spectral details are given in the Table. In the ¹¹³Cd spectra, a total of five equally spaced signals are observed as the $PhSe^-/PhS^-$ ratio is varied.* This series of resonances is just that expected for the five complexes $[Cd(SPh)_n(SePh)_{4-n}]$ ²⁻ (n = 0-4), which presumably contain tetrahedrally coordinated cadmium. The most shielded resonance is identified by its 113Cd chemrcal shift as that of $[Cd(SePh)_4]^2$ ⁻ and the least shielded is similarly attributable to $[Cd(SPh)_4]^2$ **[l] .** The signals from the mixed species are readily assigned on the basis of their order of appearance as the $PhSe^-/PhS^-$ ratio is changed, the linear variation of the incremental shifts, $\Delta\delta_{\text{Cd}}$, and the intensity and separation of the ⁷⁷Se satellite doublets. The satellite intensity about the signal from $[Cd(SPh)(SePh)₃]$ ²⁻ is ca. 20% of the total, close to the 19.5% population of the CdSSe₂⁷⁷Se kernel expected statistically, while that about the signal from $\lceil \text{Cd(SPh)}_2(\text{SePh})_2 \rceil^2$ is 16% or less (overlap with the centre band is sigmfi-

^{*}Signals from all five species may be observed m the same solution when $^{113}Cd^{2+}PhS^-$. PhSe⁻ \simeq 1.9: 3, with [¹¹³Cd] \simeq 0.05 M

cant), close to the expected 14.0%. The 77 Se satellites of $[Cd(SPh)₃(SePh)]²⁻$ were obscured by the centre band of the cadmium resonance. However, all the one-bond 113 Cd- 77 Se couplings can be obtained from the slow-exchange ⁷⁷Se NMR spectrum which consists of a free ligand resonance together with a series of doublets for the various PhSe⁻ complexes. The doublets from $[Cd(SPh)_n(SePh)_{4-n}]^{2-}$ (n = 0-2) ave the separations expected from the 77 Se satellite plittings in the ¹¹³Cd NMR spectra and the separation of the doublet from $[Cd(SPh)₃(SePh)]²$ 1s that expected from the cu. 27 Hz decrease in magnitude associated with replacement of one selenium by sulfur.

The shielding sequence $\delta_{\text{Cd}}(CdS_4) > \delta_{\text{Cd}}(CdSe_4)$ found here has also been observed for the resonances of $[Cd(SPR₃)₄²⁺]$ and $[Cd(SePR₃)₄²⁺]$ [9], and solid CdS and CdSe (in which the cadmium is tetrahedrally coordinated) [10], and a similar relationship holds for the 119 Sn chemical shifts of Sn(SPh)₄ and $Sn(SePh)₄$ (and other $Sn(SR)₄-Sn(SeR)₄$ pairs) [11]. The shift difference $\delta_{\text{Cd}}([Cd(SPh)_4]^{2-})$ $c_d([Cd(SePh)_4]^{2-})$, 49 ppm, is similar in magnitude $\delta_{\text{Cd}}([Cd(SPR_3)_4]^{2+}) - \delta_{\text{Cd}}([Cd(SePR_3)_4]^{2+})$ (45 ppm and 68 ppm for $R = Ph$ and C_6H_{11} , respectively), but significantly smaller than either $\delta_{\text{Cd}}(CdS)$ - $_{\text{Cd}}(\text{CdSe})$ (142 ppm) or $\delta_{\text{Sn}}(\text{Sn(SPh)}_{4}) - \delta_{\text{Sn}}$. $Sn(SePh)₄$ (175 ppm). The change of cadmium chemical shift on substituting selenolate for thiolate in $[Cd(SPh)_n(SePh)_{4-n}]$ ²⁻ (i.e. 13 ppm per substitution) is sufficiently small compared with the range of shifts established for mononuclear throlatocadmates (ca. 250 ppm $[1]$), and the ⁷⁷Se complexation shifts small enough compared with changes due to solution composition, that, in general, δ_{Cd} and δ_{Se} alone will be insufficient to distinguish a complex, with mixed thiolate-selenolate ligands, from a 'pure' thiolate complex together with free selenolate; for definitive evidence of a Cd-Se bond the ⁷⁷Se satellites in the 113 Cd spectrum and 113 Cd satellites in the 77 Se spectrum had better be observed. As $1J(^{113}Cd-^{77}Se)$ may be quite small, as in $[Cd(SPh)_3SePh]^2$, enrichment in both 113 Cd and 77 Se seems desirable to both ease measurements and prevent ambiguity.

The linear dependence of the ¹¹³Cd resonances of $[Cd(SPh)_n(SePh)_{4-n}]$ ²⁻ on the substituents about the cadmium is not unexpected, as near-linear depenences have been found for $[Cd(SP(C_6H_{11})_3)_n$ -Se $P(C_6H_{11})_3$ _{4-n}]²⁺ [9] and Sn(SMe)_n(SeMe)₄₋ [1] also. More surprising is the marked change in $J(^{113}Cd-^{77}Se)$ across the series $[Cd(SPh)_n]$ $(SePh)_{4-n}$ ²⁻ (see Table), though here too a first order substituent effect is evident. It would be of interest to measure one-bond $M-$ ⁷⁷Se couplings for a wider range of $[\text{Cd(SR)}_{n}(\text{SeR})_{n-m}]^{2}$ and for their tin analogues.

It was readily apparent in measuring the NMR spectra of the ternary systems $Cd^{2+}-PhSe^{--}PhS^{-}$

that the selenolate is a strong competitor for coordination to cadmium. For instance, the average stoichiostoichiometry of the complexes approximated $[Cd(SPh)_{2,4}(SePh)_{1,6}]^{2-}$ and $[Cd(SPh)_{1,6}(SePh)_{2,4}]^{2-}$ in solutions of composition $[Cd^{2+}] : [PhS^-] : [PhSe^-]$ $= 0.05:0.50:0.10$ *M* and $0.05:0.40:0.20$ *M*, respectively. At the same time, the distribution of mixed species at any $(PhS^{-}/PhSe^{-})$ bound ratio is close to statistical; for example, the ¹¹³Cd NMR spectra of each of the aforementioned solutions provided evidence for four complexes in equilibrium, the major species at any $(PhS^{-}/PhSe^{-})_{bound}$ ratio is close to and 1 and 2, respectively. From the ¹¹³Cd NMR signal intensities in solutions of known composition it was possible to estimate that the ratio of the verall formation constants, $K([Cd(SePh)_4]^2^-)/$ $K(Cd(SPh)_a]$ ²⁻) is of order 10³-10⁴. Thus cadmium, like mercury [12], binds preferentially at selenolate donor sites, and it is tempting to speculate that the ready formation of the Cd-Se bond may be involved in the antagonism of selenium compounds towards cadmium toxicity *in vivo.*

Acknowledgements

This work was made possible by a Strategic Grant in Environmental Toxicology from the Natural Sciences and Engineering Research Council of Canada. The high field NMR spectra were obtained at the Southwestern Ontario NMR Centre, funded by a Major Installatron Grant from N.S.E.R.C.

References

- G K. Carson, P. A. W. Dean and M J. StrlIman, *Inorg. Chim. Acta, 56, 59 (1981).*
- T. A. Gasrewicz and J. C. Smith, *Enwon. Health Perspez*rives, 25, 133 (1978), and references therem.
- 3 J. Parízek, I Benes, I Ostádalová, A. Babıcký, J. Benes and J Pitha, in 'Mineral Metabolism in Pediatrics', D Barltrop and W. L Burland eds., F. A. Davis, Philadelphia, 1969. Ch 8, and references therein.
- H. E Ganther, m 'Selenium', R. A. Zmgaro and W. C. Cooper, eds , Van Nostrand Reinhold, New York, 1974. Ch. 9, and references therem.
- E. J. Underwood, 'Trace Elements in Human and Ammal Nutrition', 4th edn., Academic Press, New York, 1977. Ch. 9 and 12 and references therein.
- 6 R. J. Kostelnik and A A. Bothner-By, J. *Magn. Reson., 14, 141 (1974).*
- *7* M. E. Peach. *Inora. Nuclear Chem. Lett.. 41. 1390* (1979) .
- 8 8 J P. Fackler, Jr., and W. M. Pan, J. *Am. Chem. Sot., 101, 1607 (1979).*
- *9* P. A. W. Dean, *Can. J. Chem.,* to be published.
- 10 A NoIIe, 2. *Naturforsch., 33A, 666 (1978).*
- 11 J. D. Kennedy. W. McFarlane. G. S Pyne, P. L. Clarke and J. L. Wardell, *J. Chem. Soc. Perkin II*, 1234 (1975)
- *12 Y.* Sugiura, Y. HOJO, Y Tamer ad H. Tanaka, J. *Am. Chem. Sot., 98, 2339 (1976).*